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Multiple linear regression analysis was applied to a sample of 314 SiO 4 tetrahedra. The mean Si-O bond 
lengths were treated as the dependent variable. The independent variables which explain most of the variation 
in (Si-O)me~n are: NC, the number of bridging O atoms per tetrahedron; CNM, the mean coordination 
number of all O atoms within the tetrahedron; NSECM, the mean value of the secant of the bridging angles 
S i -O-T ,  where non-bridging O atoms are assigned an NSEC value of 2.0. The regression equation 
(Si-O)me~n = 1"615 - 0.0047NC + 0.0054CNM explains 57.6% of the variation in (Si-O)mea ., with a 
standard deviation about regression of 0-007 ]~. This equation can be used for predictive purposes when 
(Si--O)mean values are needed for computer simulation of crystal structures. The equation (Si--O)mean = 1 560 
+ 0.032NSECM + 0.0031CNM can be used when the structure has been determined and the S i - O - T  
angles are known. It explains 66% of the variation in (Si-O)mea n with a standard deviation of 0.007/~,. The 
electronegativity of the cations in the structure and the distortion indices of the tetrahedra did not contribute 
significantly to the regression sum of squares. The dependence of (Si-O)mean on CNM is not as large as has 
been found previously in univariate linear regression. 

Introduction 

In recent years the variation of mean bond lengths in 
tetrahedral anions has received some attention: Smith 
& Bailey (1963) investigated the effects of  tetrahedral 
linkage on A1-O and S i - O  distances; Brown & Gibbs 
(1969) showed that the mean bond length S i - O  is a 
function of the mean coordination number of the O 
atoms; Shannon (1971), Shannon & Calvo (1973) and 
Shannon (1976a,b) studied the dependence of mean 
tetrahedral bond lengths in BO 4, SiO 4, GeO4, PO4, 
AsO4, VO4 and SeO4 on the mean electronegativity of 
the cations in the structure; Baur (1974) gave a 
regression equation for PO 4 in which the mean 
coordination number of the O atoms and the distortion 
index of the tetrahedral group were used to estimate the 
mean bond length P - O .  Nobody seems to have 
investigated by multiple linear regression analysis the 
influence of all these factors together on a large sample 
of mean tetrahedral distances of a given element. 

Data 

The mean S i - O  bond lengths of 314 silicate tetrahedra 
observed in 155 crystal structures determined by X-ray 
or neutron diffraction were collected. The means of the 
estimated standard deviations of the S i - O  bond lengths 
in any single structure included here are not larger than 
0.010 A,. The mean of the standard deviations of all the 
bond lengths used is 0-005 ,/k. All bond lengths and 
estimated standard deviations have been recalculated 

from the data in the original papers. Discrepancies were 
checked by contacting the authors concerned. Only 
bond lengths not corrected for thermal motion were 
used. 

For each silicate tetrahedron the following data were 
obtained: 

(1) NC, the number of bridging O atoms within the 
tetrahedron. An O atom is considered to be bridging if 
it is shared with another tetrahedral A1, B, Ga, P or Si 
atom. If the neighboring tetrahedrally coordinated 
element is Be, Li, Mg, or Zn it is not considered a 
bridging atom. 

(2) CNM, the mean coordination number of all O 
atoms in a given tetrahedron. If an O atom is the 
acceptor of a hydrogen bond this is counted as a 
coordinating contact (Baur, 1970, 1974). 

(3) SECM, the mean value per SiO 4 tetrahedron of 
the negative secant of the angle Si--O--T (Gibbs, 
Hamil, Louisnathan, Bartell & Yow, 1972) where T is 
A1, B, Ga, P or Si. Non-bridging O atoms do not have a 
defined value of S i - - O - T  and their SECM is not 
included in calculating the average (or any other 
statistic). 

(4) NSECM, the mean value per SiO4 tetrahedron 
of the negative secant of the angle S i - -O-T ,  where all 
non-bridging O atoms have been arbitrarily assigned an 
NSEC value of 2-0. For an orthosilicate the value of 
NSECM is therefore 2-0. For four-connected tet- 
rahedra NSECM is identical with SECM; for NC = 1, 
2, and 3 the average NSECM values are intermedj'ate 
between 2-0 and the corresponding SECM vaJuc 
(Table 1). 
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Table 1. Simple sample statistics of the mean S i - O  distances used for the regressions, sorted according to the 
degree of polymerization of the tetrahedra (NC) 

Estimated standard deviations, here as elsewhere in this paper, are in parentheses following the value and are in units of the least significant 
digits of the value. 

Number of 
observa- Minimum Maximum 

tions NC (Si-O)mea n (Si--O)mean (Si--O)mean NSECM . . . .  CNM . . . .  SECM . . . .  ENmean DITOmean 

314 0-4  1"623 (11) A 1-584 A 1.654/~, 1-64 (25) 3.26 (61) 1"33 (17) 1.64 (14) 0"00016 (16) 
50 0 1.636 (8) 1"622 1.654 2-00 (0) 3"97 (62) - 1.59 (16) 0-00006 (11) 
37 1 1"627 (9) 1"610 1"646 1"82 (6) 3"36 (46) 1.27 (25) 1"58 (13) 0"00019 (16) 

108 2 1.626 (7) 1.607 1.649 1.68 (7) 3.34 (32) 1.37 (14) 1.67 (11) 0.00024 (14) 
53 3 1.617 (6) 1-601 1.632 1-49 (12) 3.09 (42) 1.32 (16) 1-62 (10) 0.00018 (19) 
66 4 1.610 (9) 1.584 1-629 1.31 (15) 2-70 (56) 1-31 (15) 1.70 (15) 0.00007 (7) 
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Fig. 1. Scatter plot of observed (Si--O)mea n against NC. The line is 
the simple-linear-regression line of (Si-O)  . . . .  on NC [slope = 
-0 .0063  (3)1. Open circles: single points; solid circles: multiple 
points; crosses: average for NC group. 
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Fig. 2. Scatter plot of observed (Si-O)mo." against CNM. The 
regression line [slope = 0.0119 (8)1 results from simple linear 
regression of (Si-O)  . . . .  on CNM. 

(5) DITO, the distortion index of the tetrahedron as 
defined by Brown & Shannon (1973). 

(6) EN, the mean electronegativity of all the cations 
in a given structure as defined by Shannon (1971). The 
individual electronegativity values themselves were 
taken from Allred (1961). 

The observed mean S i - O  distances in the sample 
have a range of 0.07 /i, (Table 1). If one breaks the 
sample down according to the linkage of the silicate 
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Fig. 3. Scatter plot of observed (Si-O)m~a. against NSECM. The 
regression line has a slope of 0.037 (2). 
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Fig. 4. Scatter plot of observed (Si-O)moan against SECM. The 
slope of the  regression line is 0.027 (3). 

tetrahedra the range within each group is about half as 
large. However, all the groups overlap: tetrahedra with 
mean S i - O  values between 1.622 and 1.629 ,/~ could 
be orthosilicates or could equally well be four- 
connected tetrahedra (Fig. 1). The data are displayed in 
Figs. 1 to 4, except for DITO and EN which contribute 
to the regressions only in a minor way.* 

* A list of compounds, minerals and their references has been 
deposited with the British Library Lending Division as Supplemen- 
tary Publication No. SUP 33323 (6 pp.). Copies may be obtained 
through The Executive Secretary, International Union of Crystal- 
lography, 13 White Friars, Chester CH I 1NZ, England. 



W E R N E R  H. BAUR 1753 

C a l c u l a t i o n s  

The correlation-coefficient matrix (Table 2) shows that 
of the 21 non-trivial possible correlation coefficients no 
less than 17 are significant. The significance prob- 
abilities are based on the t test and give us the 
probability that a value of the correlation coefficient (r) 
as large or larger in absolute value than the one 
computed would have been observed fortuitously even 
though the two variables are not in fact correlated. 
Therefore we can say that we have more than a 99% 
chance that all but the correlations between the pairs 
NSECM with DITO, SECM with NC, DITO with NC, 
and SECM with EN are significant. That a correlation 
is significant may not necessarily be helpful in 
establishing a regression equation of practical value, 
since the per cent variation explained (percentage of the 
sum of squares due to regression) is proportional to the 
square of the correlation coefficient. This means that 
NSECM explains 64.5% of the variation observed in 
(Si-O)mean, NC explains 52%, while DITO explains 
only 3% of this variation. Further tests showed that 
multiple regressions in which (Si--O)mea n was the 
dependent variable, while NC and C N M  were the 
independent variables, explained 57-6% of the 
variation in (Si--O)mean. Adding to that a third 
independent variable explained 58.3% if DITO was 
added, 58.6% if EN was added and 62.8% if SECM 
was added (in this latter case for 264 observations 
only). 

By itself NSECM explains more of the variation than 
NC, C N M  and SECM combined. There is no point in 
adding NC to the multiple-regression model when 
NSECM is present because the correlation between NC 
and NSECM is very high (--0.92, see Table 2). 
Actually, NSECM combines within one variable the 
attributes of both NC and SECM. It splits the sample 

population into groups, as does NC, and allows for a 
gradation within the groups according to SECM. Since 
NSECM and C N M  are less correlated than NSECM 
and NC, it pays to include C N M  with NSECM in a 
regression model. This raises r 2, the per cent variation 
explained, to 66%. 

The four best regression models based on these 
considerations are listed as models 1 to 4 in Table 3. 
All independent variables in these models have a very 
high probability of being statistically significant. 
However, the goodness of fit for these models is almost 
constant. The standard deviation between observed and 
estimated values of (Si--O)mean in all four models is 
0.007 ,~. The differences between these standard 
deviations are in the fourth decimal place. 

A study of regression models for the individual 
groups in NC was less fruitful. None of the independent 
variables considered here contribute significantly to the 
variation of mean S i - O  bond lengths in orthosilicates 
(NC = 0). The r 2 values for the groups with NC = 1, 2 
and 3 are all below 0.40. Less than 40% of the 
variation within these groups can be explained by 
NSEC, NC, CNM, SECM, EN and DITO. The 
significance probabilities of C N M  in models 6 and 7 
(Table 3) are not as high as one would wish. Only for 
NC = 4 can more than half  of the variation be 
explained by a model including NSECM and CNM, 
and in this case the C N M  variable is acceptably 
significant. In none of the best models does EN 
contribute in a significant manner to the regression sum 
of squares. The correlation coefficient between EN and 
(Si-O)m was also found by Shannon (1976a) to be 
small (0.40). 

All statistical calculations were performed on HP-65 
and IBM 370/158 computers (using SAS76; Barr, 
Goodnight, Sall & Helwig, 1976). 

Table 2. Correlation coefficients r (in upper row) between the variables considered here 

All coefficients involving SECM are based on 264 observations, since SECM is not defined for orthosilicates. The other coefficients are 
based on the complete set of 314 observations. In the lower row, the significance probability is listed (see text). A significance probability of 
0.0001 means that it is 0.0001 or less. 

(Si-O)m~an NSECM NC CNM SECM EN DITO 

(Si-O)m~. 1-0 0- 80 --0- 72 0- 63 0.45 - -0 .20 0-16 
0.0 0-0001 0-0001 0.0001 0-0001 0.0003 0.0046 

NSECM 1.0 -0.92 0.67 0.48 --0.26 0-12 
0.0 0-0001 0-0001 0-0001 0.0001 0.038 

NC 1.0 -0.63 --0.03 0.24 --0-03 
0-0 0.0001 0.65 0.0001 0.58 

CNM 1-0 0.32 -0.54 0.21 
0.0 0.0001 0- 0001 0.0002 

SECM 1.0 0.004 0-26 
0.0 0.95 0.0001 

EN 1.0 --0.18 
0.0 0.0011 

DITO 1.0 
0-0 
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Table 3. Multiple-regression equations for (S i - -O)mea  n for different samples: correlation coefficient squared ( r2) ;  

significance probability (s.p.), where 0.0001 means that it is 0.0001 or less; slopes for  different independent 
variables b~ (for NSECM), b 2 (for NC), b 3 (for CNM), b 4 (for SECM) and b 5 (for DITO); standard deviation 

about regression, which is the square root o f  the mean square error 

(1) (2) 

NC 0 to 4 1 to 4 
Sample size 314 264 
r 2 0.576 0-628 
a~ intercept 1.615 (4) 1.591 (4) 
s.p. (a) 0.0001 0.0001 
b~ (NSECM) - - 
s.p. (bt) - - 
b 2 (NC) - 0 . 0 0 4 7  (4) - 0 . 0 0 5 3  (4) 
s.p. (b2) 0.0001 0.0001 
b 3 (CNM) 0.0054 (9) 0.0043 (10) 
s.p. (b 3) 0.0001 0.0001 
b4 (SECM) - 0.022 (2) 
s.p. (b 4) - 0.001 
b 5 (DITO) - - 
s.p. (b 5) - - 
Standard deviation 0.007 A 0.007 A 

(3) (4) (5) (6) (7) (8) 

0 to 4 0 to 4 I 2 3 4 
314 314 37 108 53 66 
0.660 0.645 0.383 0.342 0.317 0-516 
1.560 (3) 1.562 (3) 1.474 (33) 1.545 (14) 1.571 (10) 1.554 (7) 
o.oool o.oool o.oool o.oool o.oool o.oooi 
0.032 (2) 0.037 (2) 0.084 (18) 0.038 (9) 0.026 (6) 0.034 (6) 
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

0.0031 (8) - - 0.0037 (20) 0.0033 (19) 0-0045 (16) 
0.0002 - - 0.063 0.084 0-006 

- - - 1 4 . 2  ( 4 . 3 )  - 1 2 . 3  ( 4 . 3 )  - 

- - - 0-0012 0-007 - 
0.007 A 0-007 A 0.007 A 0.006 A 0-005 A 0-006 A 

Discussion 

Each of the columns of Table 3 corresponds to a 
possible equation for estimating the mean tetrahedral 
S i -O distance under different conditions and for 
different types of SiO 4 groups. The first of these 
equations [ (S i - -O)mea  n = 1.615 - - 0 . 0 0 4 7 N C  + 
0.0054CNM] has the advantage of being predictive. 
For a given crystal structure NC and CNM can be 
determined even if the structure is only imprecisely 
known. They can also be determined if one is dealing 
with a hypothetical structure which one wishes to 
simulate on a computer (Baur, 1977a). In this case a 
predictive equation is of practical value. The better the 
available predicted bond-length values are, the more 
reliable is the computer simulation of crystal structures. 

The slope of (Si-O)mean with CNM is 0.0054 (9). 
This value is statistically identical with the slope of 
0.0047 (9) obtained for ( P - - O ) m e a  n with CNM (Baur, 
1974). It is significantly different from the slope of 
0.015 obtained for the tetrahedral (Si-O)mea n with 
CNM (Brown & Gibbs, 1969), from the slope of 0.013 
found for the octahedral (S i - -O)mea  n (Baur, 1977b) and 
from the slope (0.012) which can be read from Fig. 5 of 
Shannon & Prewitt (1969) and which applies not only 
to silicates but to a wide variety of cation-oxygen 
bonds. The univariate slope entered in Fig. 2 also has a 
value of 0.012. The difference between these situations 
of course is that regressions on only one variable will 
result in a steeper slope when compared with multiple 
regressions involving other independent variables which 
in fact are not truly independent but instead correlated 
with each other (the r between NC and CNM is --0-63, 
Table 2). Since SECM is not strongly correlated with 
NC and CNM the addition of SECM into the multiple- 
regression model [equation (2), Table 3] does not affect 
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Fig. 5. Scatter plot of  observed (Si-O)mean against estimated 
(S i -O)  . . . . .  based on equation (1). The line is the regression line 
with a slope of  1.00 (5). 

the slopes of NC and CNM in a significant way. The 
slope of NC is --0.047 in equation (1), significantly 
different from the univariate slope [-0-063 (3)] of 
(S i - -O)mea  n with NC (Fig. 2). Strangely enough, 
however, it is identical with the slope (-0-048) which 
can be read from Fig. 1 of Smith & Bailey (1963). 

The scatter in a plot of observed (S i - -O)mea  n v e r s u s  

estimated ( S i - O ) m e a  n is appreciable (Fig. 5), but the 
standard deviation of regression [(A), Table 4] is only 
0.007 A. This compares favorably with the mean 
precision of all bond lengths involved (0.005 A). The 
extreme differences between observation and estimate 
range from -0 .02  up to 0.03 A, as they do for all the 
other regression equations considered here (Table 4). 
Some of these deviations might be due to systematic 
errors in the observations. Errors in unit-cell-length 
determinations or overlooked partial occupancies of the 
tetrahedral site by AI could cause this. 
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Table 4. Standard  deviations about regression and minimum and maximum A values between observed 
(Si-O),,,ea, and estimated (Si--O)mea . 

(A) Estimate based on 
equation (1)* 

(B) Estimate based on 
equation (3)* 

(C) Estimates based on 
equations (5), (6), (7) and (8)* 

Sample Standard Standard Standard 
NC size deviation Ami n Area x deviation Ami n Area x deviation Ami" Ama x 

0-4"t" 314 0-007 A --0"023 A 0"026 A 0"007 A --0"018 A 0-030 A 0"006 A --0-017 A 0"031 .A 
0 50 0-008 -0-021 0-017 0"008 --0.018 0"018 - - - 
1 37 0-008 --0-018 0"017 0"007 --0-016 0-015 0-007 --0"015 0.014 
2 108 0-007 -0-012 0"026 0"006 --0"014 0"022 0"006 --0"017 0-019 
3 53 0"006 --0"017 0"012 0-005 -0"016 0-011 0"005 --0-015 0"009 
4 66 0"008 --0.023 0"021 0"006 --0"018 0"530 0"006 --0"017 0-031 

* Table 3. 
"l" The estimate under (C) is only for NC I to 4; the number of observations is therefore 264. 

Equation (3) (Table 3) can be used for 'post'-dictive 
purposes: (Si--O)mea n = 1.560 + 0.032NSECM + 
0"0031CNM. This means that once a crystal structure 
is determined and refined and the angles S i - O - T  are 
known, one can compare the observed with the 
estimated mean S i -O bond lengths. The overall 
agreement between observation and estimation is 
improved for this regression model as compared with 
the equation (1) model [Fig. 6, and (B) Table 4]. 
However, there is one datum which lies outside the 
range of the others. It is the zunyite (Louisnathan & 
Gibbs, 1972) point with an observed (Si--O)mean of 
1.628 ]k, and an estimated (Si- -O)mea n of 1-598 A. A 
possible explanation for this is provided by the notion 
that the lower limit of the size of the S i - O - T  angles is 
determined by the non-bonding interactions between 
the tetrahedral cations (Glidewell, 1975, 1977a,b; 
O'Keeffe & Hyde, 1976, 1978; Baur, 1977c). This does 
not preclude that for a given S i -O bond length the 
Si--O--T angle is wider than would be allowed by the 
non-bonded interactions of the Si atoms with each 
other. The SiO 4 tetrahedron in zunyite seems to 
represent just such a case. In a regression calculation 
involving individual Si -O bond lengths (Baur, 1977c) 
the same four-connected S i O  4 tetrahedron in zunyite 
joins several other data points in lying off the trend 
established by the lower limit of the S i - O - T  angles. 
This means that the correlation between S i -O  dis- 
tances and S i - O - T  at the lower limit of these angles is 
due to the geometrically simple dependence of the angle 
S i - O - T  on the S i -O and T--O distances and not vice 
versa as required by zr-bonding theory (Cruickshank, 
1961). 

The physical significance of the dependence of 
(Si-O) m on NSECM and SECM seems to be due to 
this geometric relationship between the distances Si-O,  
Si-Si and the angle S i -O-S i .  The non-bonded Si . . .  Si 
distances are at least as constant as the bonded S i -O 
distances (O'Keeffe & Hyde, 1978); therefore the 
angles S i - O - S i  have to be correlated with the S i -O 
distances (and with the Si-Si distances). 
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Fig. 6. Scatter plot of observed (Si-O)mean against estimated 
(Si-O)mea, using equation (3). Regression of the estimated on the 
observed distances results in a line with a slope of 1-00 (4). 

Equations (5) to (8) (Table 3) improve somewhat the 
fit between observations and estimates. However, they 
are of questionable value since r 2 for each of them is 
smaller than for either equations (1) or (3), the CNM 
contributions to equations (6) and (7) are not of suf- 
ficiently high significance, while the DITO contributions 
are of opposite sign, and last but not least they require 
a larger number of fitted parameters. Equations (1) and 
(3) have only three fitted parameters each. Even with 
equation (8) the zunyite datum is not satisfactorily 
accounted for. 

The zunyite datum is an example of a poor fit. 
Ussingite and low albite are examples of a slightly 
better than average fit between observation and 
estimate (Table 5). It is remarkable that the three- 
parameter equation (1), which applies to a wide variety 
of silicates, gives a better agreement with observation 
than the four-parameter equation derived from albite 
and applied to ussingite by Ribbe (1974). Ribbe's 
equation presupposes a detailed knowledge of S i - O - T  
angles and N a - O  distances. Equation (1) relies on NC 
and CNM only. 

Based on the (Si-O)m versus CNM relationship 
established here the radius of Si 4÷ in tetrahedral 
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Table 5. Observed mean S i - O  bond lengths in ussingite, Na2A1SiaOs(OH), and albite, NaA1Si30 8, and estimates 
based on equation (1) [(Si-O)e~], equation (3) [(Si-O)e31, equations (7) and (8) [(Si-O)e78] and on Ribbe's 

(1974) equation [(Si-O)er] 

Ussingite 

Aibite 

(si-O)ob s (Si--O)e~ (Si-O)e3 (Si-O)eT8 (Si-O)er 

Si 2 1.620 A 1.618 A 1.619/~, 1.619 A 1.616 A 
Si 3 1.620 1.612 1.612 1.613 1.608 
Si 4 1.622 1.618 1.619 1.618 1.620 
Silrn 1-609 1.614 1.609 1.610 1.609 
Si2o 1-613 1-612 1-612 1.613 1-614 
Si2m 1.615 1.612 1.614 1.615 1.615 
Standard deviation 0-006 0.004 0.004 0.006 
about regression 

coordination with O is 0.257 A assuming that the O 
radii are as determined by Shannon & Prewitt (1969). 
This is essentially identical with the radius of 0.26 ,~ 
reported both by Shannon & Prewitt (1969) and by 
Shannon (1976b). The small difference is within the 
tolerance assumed by these authors. It is also a small 
difference compared with the standard deviation 
between observed and estimated S i - O  distances 
observed in this work. 

The arbitrary assumption that NSECM for the 
orthosilicates has the value of 2.0 can be justified by 
the success of the model. It is also interesting to note 
that the mean S i - O  distances in orthosilicates have 
values similar to those found in polymerized silicate 
tetrahedra, when the Si--O--T angles are narrow and 
consequently SECM has a high value, sometimes 
ranging up to 2.0, in one case even exceeding this 
value. 

Conclusion 

Equation (1) established here allows the mean S i - O  
distances of 314 silicate tetrahedra to be estimated 
within 0.007 A. This equation can be used for the 
prediction of mean S i - O  distances needed in the 
computer simulation of crystal structures (see, for 
example, the simulation of the superstructure of low 
tridymite; Dollase & Baur, 1976). It is disappointing, 
however, that the model is not able to estimate in detail 
the variations in the bond lengths of orthosilicates, even 
though their observed values range from 1.622 to 
1.654 A. It is also obvious that two of the factors 
which were isolated in previous work on other 
tetrahedral groups, namely the distortion index and the 
mean electronegativity, are not responsible for much of 
the mean-bond-length variation observed for this 
sample of 314 SiO 4 tetrahedra. 

I thank the Computer Center of the University of 
Illinois for computer time. 
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